Difference in the late ergosterol biosynthesis between yeast spheroplasts and intact cells.
نویسندگان
چکیده
A comparative study on post-squalene sterol synthesis in intact yeast cells and spheroplasts was carried out with strains from three genera (Saccharomyces cerevisiae, Schizosaccharomyces pombe, Pichia pastoris) as well as with engineered S. cerevisiae cells altered in regard to the late ergosterol synthesis pathway. A common outcome of incubation experiments with radioactive acetate was that in intact cells the metabolic pathway flows till its specific end product (ergosterol and its precursor, depending on the enzyme deficiency), whereas in spheroplasts the pathway was stalled some step upstream. For example, in spheroplasts from wt strains, non-cyclic triterpenes squalene and oxidosqualene accumulated as though the metabolic path was kept from producing steroid-shaped molecules different from the end product. Accumulation of non-cyclic triterpenes was observed also in spheroplasts from S. cerevisiae cells lacking 3-ketosteroid reductase activity, an enzyme belonging to the C4-demethylase complex. When production of cyclic triterpenes was compromised by loss or poor functionality of oxidosqualene cyclase (EC 5.4.99.7), the difference between intact cells and spheroplasts was still remarkable, yet limited to the different oxido/dioxidosqualene ratio. The characteristics of spheroplasts as non-proliferating cells may partially explain the observed differences in post-squalene pathway from intact cells. We cannot say if the difference in metabolic pathways in spheroplasts and intact cells is a rule. We think, however, that it is worthwhile to search for an answer, as a wider picture of the points where the metabolic pathways are stalled in spheroplasts could provide original ideas about the metabolic network in yeast.
منابع مشابه
The Extractability of Inner-Membrane Proteins from Salmonella typhimurium Intact Cells, Spheroplasts and Inner-Membrane Fragments by Non-Denaturing Detergents
The effect of Triton X-100, Na cholate and Tween 80 on the solubilization of integral membrane proteins in intact cells, spheroplasts and inner-membrane fragments of Salmonella typhimurium was studied. The detergents were used in various concentrations (1.6 to 64 mM) and cytochromes b and d were used as marker to monitor the solubilization of membrane-bound proteins. Results showed that no inne...
متن کاملEffects of culture conditions on ergosterol biosynthesis by Saccharomyces cerevisiae.
Ergosterol is an essential component of yeast cells that maintains the integrity of the membrane. It was investigated as an important factor in the ethanol tolerance of yeast cells. We investigated the effects of brewing conditions on the ergosterol contents of S. cerevisiae K-9, sake yeast, several kinds of Saccharomyces cerevisiae that produce more than 20% ethanol, and X2180-1A, laboratory y...
متن کاملErgosterol is required for targeting of tryptophan permease to the yeast plasma membrane
It was known that the uptake of tryptophan is reduced in the yeast erg6 mutant, which is defective in a late step of ergosterol biosynthesis. Here, we show that this is because the high affinity tryptophan permease Tat2p is not targeted to the plasma membrane. In wild-type cells, the plasma membrane localization of Tat2p is regulated by the external tryptophan concentration. Tat2p is transporte...
متن کاملAntifungal Activity of Carvacrol on Ergosterol Synthesis in Multidrug Resistant Candida albicans
Introduction: Greatly increased use of antifungal therapies has resulted in the development of multidrug resistant. The phenolic compound carvacrol have been reported to have anti-Candida activity. This work is an attempt to examine effect of carvacrol on ergosterol synthesis against multidrug resistant Candida albicans. Methods: This cross-sectional study has been conducted on 30 immune-compr...
متن کاملInvolvement of yeast YOL151W/GRE2 in ergosterol metabolism.
The Saccharomyces cerevisiae gene YOL151W/GRE2 is widely used as a model gene in studies on yeast regulatory responses to osmotic and oxidative stress. Nevertheless, information concerning the physiological role of this enzyme, a distant homologue of mammalian 3-beta-hydroxysteroid dehydrogenases, is scarce. Combining quantitative phenotypic profiling and protein expression analysis studies, we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Acta biochimica Polonica
دوره 63 2 شماره
صفحات -
تاریخ انتشار 2016